Qwen3-235B-A22B-Instruct-2507

Qwen3全系列模型,实现思考模式和非思考模式的有效融合,可在对话中切换模式。
类型对话组织Alibaba发布日期2025-07-21
官网https://tongyi.aliyun.com/welcome

能力维度评分

评估案例报告

指标名称指标权重评估方式通过案例数失败案例数通过率案例详情
逻辑等价3hybrid7654%
优化深度4subjective131645%
语法错误检测2hybrid12192%

评测流程

逻辑等价
1
2=================================================
3SQL Capability Evaluation Process Report
4=================================================
5Run ID: 20250729_143834_398
6Run Dimensions: sql_optimization
7Run Indicator: logical_equivalence
8Evaluation Timestamp: 2025-07-29T15:43:35.700956
9Target LLM: Qwen/Qwen3-235B-A22B-Instruct-2507
10Judge LLMs: Pro/deepseek-ai/DeepSeek-V3, o4-mini, gemini-2.5-pro-preview-06-05
11-------------------------------------------------
12
13[2025-07-29 15:36:04.944633]
14======== Calculate Ability Score ========
15[2025-07-29 15:36:04.965923] ======== Evaluation Complete ========
16[2025-07-29 15:36:04.965923] Run Capability: sql_optimization
17[2025-07-29 15:36:04.966339] Run Indicator: sql_optimization, Parameters size: 25144B
18[2025-07-29 15:36:04.968025]
19--- Capability: sql_optimization Indicator logical_equivalence.jsonl Evaluating Type: hybrid ---
20[2025-07-29 15:36:04.968025]
21--- Case: 1 ---
22[2025-07-29 15:36:04.968025] [1] Case Run 1/1
23[2025-07-29 15:36:04.968025] [Model Prompt]: You are a database expert in SQL performance optimization.
24Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
25Output only the optimized SQL as a single-line statement with no markdown or extra text.
26
27Table Definitions:
28CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
29
30Explain Output in JSON:
31{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}
32
33Original SQL:
34SELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );
35
36Optimized SQL:
37
38[2025-07-29 15:36:04.969359] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}\n\nOriginal SQL:\nSELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
39[2025-07-29 15:36:06.868870] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT student_name FROM students WHERE student_id IS NOT NULL;
40[2025-07-29 15:36:06.878912] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
41they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
42Return **only** JSON in this format, with no extra text:
43
44{
45 "answer": "yes" | "no"
46}
47
48Original SQL:
49SELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );
50
51Table Definitions:
52CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
53
54Explain Output in JSON:
55{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}
56
57Translated SQL:
58SELECT student_name FROM students WHERE student_id IS NOT NULL;
59
60[2025-07-29 15:36:06.880323] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}\n\nTranslated SQL:\nSELECT student_name FROM students WHERE student_id IS NOT NULL;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
61[2025-07-29 15:36:06.880323] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
62they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
63Return **only** JSON in this format, with no extra text:
64
65{
66 "answer": "yes" | "no"
67}
68
69Original SQL:
70SELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );
71
72Table Definitions:
73CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
74
75Explain Output in JSON:
76{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}
77
78Translated SQL:
79SELECT student_name FROM students WHERE student_id IS NOT NULL;
80
81[2025-07-29 15:36:06.882441] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
82they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
83Return **only** JSON in this format, with no extra text:
84
85{
86 "answer": "yes" | "no"
87}
88
89Original SQL:
90SELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );
91
92Table Definitions:
93CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
94
95Explain Output in JSON:
96{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}
97
98Translated SQL:
99SELECT student_name FROM students WHERE student_id IS NOT NULL;
100
101[2025-07-29 15:36:06.882441] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}\n\nTranslated SQL:\nSELECT student_name FROM students WHERE student_id IS NOT NULL;\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
102[2025-07-29 15:36:06.883535] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_name FROM students WHERE student_id IN ( SELECT student_id FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM ( SELECT student_id, gender FROM students ) AS inner_dt2 ) AS inner_dt1 ) AS outer_dt );\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "students", "access_type": "ALL", "possible_keys": ["PRIMARY"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_1_1748591779.students.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "112"}, "used_columns": ["student_id"]}}]}}\n\nTranslated SQL:\nSELECT student_name FROM students WHERE student_id IS NOT NULL;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
103[2025-07-29 15:36:10.390306] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
104 "answer": "no"
105}
106[2025-07-29 15:36:17.622106] [o4-mini Model Answer]: {"answer": "yes"}
107[2025-07-29 15:36:29.075010] [gemini-2.5-pro-preview-06-05 Model Answer]: {
108 "answer": "yes"
109}
110[2025-07-29 15:36:29.077439] [1] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
111[2025-07-29 15:36:29.077439] [1] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: False
112[2025-07-29 15:36:29.077439] [1] Hybrid Eval: Using Judge LLM 'o4-mini'
113[2025-07-29 15:36:29.077439] [1] Hybrid Eval Case Judge o4-mini Results: True
114[2025-07-29 15:36:29.077439] [1] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
115[2025-07-29 15:36:29.077439] [1] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: True
116[2025-07-29 15:36:29.078456] [1] Hybrid Eval Case Judge Final Results: True
117[2025-07-29 15:36:29.078456] [1] hybrid Eval Case Final Result: True
118[2025-07-29 15:36:29.078456]
119--- Case: 2 ---
120[2025-07-29 15:36:29.078456] [2] Case Run 1/1
121[2025-07-29 15:36:29.078456] [Model Prompt]: You are a database expert in SQL performance optimization.
122Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
123Output only the optimized SQL as a single-line statement with no markdown or extra text.
124
125Table Definitions:
126CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );
127CREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );
128
129Explain Output in JSON:
130{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like 'Dr. %')"}}]}}
131
132Original SQL:
133SELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE 'Dr. %';
134
135Optimized SQL:
136
137[2025-07-29 15:36:29.079485] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );\nCREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like \'Dr. %\')"}}]}}\n\nOriginal SQL:\nSELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE \'Dr. %\';\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
138[2025-07-29 15:36:32.507033] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT s.teacher_id, t.teacher_name FROM students s INNER JOIN teachers t ON s.teacher_id = t.teacher_id WHERE t.teacher_name LIKE 'Dr. %'
139[2025-07-29 15:36:32.511110] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
140they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
141Return **only** JSON in this format, with no extra text:
142
143{
144 "answer": "yes" | "no"
145}
146
147Original SQL:
148SELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE 'Dr. %';
149
150Table Definitions:
151CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );
152CREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );
153
154Explain Output in JSON:
155{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like 'Dr. %')"}}]}}
156
157Translated SQL:
158SELECT s.teacher_id, t.teacher_name FROM students s INNER JOIN teachers t ON s.teacher_id = t.teacher_id WHERE t.teacher_name LIKE 'Dr. %'
159
160[2025-07-29 15:36:32.512364] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE \'Dr. %\';\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );\nCREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like \'Dr. %\')"}}]}}\n\nTranslated SQL:\nSELECT s.teacher_id, t.teacher_name FROM students s INNER JOIN teachers t ON s.teacher_id = t.teacher_id WHERE t.teacher_name LIKE \'Dr. %\'\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
161[2025-07-29 15:36:32.512364] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
162they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
163Return **only** JSON in this format, with no extra text:
164
165{
166 "answer": "yes" | "no"
167}
168
169Original SQL:
170SELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE 'Dr. %';
171
172Table Definitions:
173CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );
174CREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );
175
176Explain Output in JSON:
177{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like 'Dr. %')"}}]}}
178
179Translated SQL:
180SELECT s.teacher_id, t.teacher_name FROM students s INNER JOIN teachers t ON s.teacher_id = t.teacher_id WHERE t.teacher_name LIKE 'Dr. %'
181
182[2025-07-29 15:36:32.517194] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE \'Dr. %\';\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );\nCREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like \'Dr. %\')"}}]}}\n\nTranslated SQL:\nSELECT s.teacher_id, t.teacher_name FROM students s INNER JOIN teachers t ON s.teacher_id = t.teacher_id WHERE t.teacher_name LIKE \'Dr. %\'\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
183[2025-07-29 15:36:32.520820] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
184they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
185Return **only** JSON in this format, with no extra text:
186
187{
188 "answer": "yes" | "no"
189}
190
191Original SQL:
192SELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE 'Dr. %';
193
194Table Definitions:
195CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );
196CREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );
197
198Explain Output in JSON:
199{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like 'Dr. %')"}}]}}
200
201Translated SQL:
202SELECT s.teacher_id, t.teacher_name FROM students s INNER JOIN teachers t ON s.teacher_id = t.teacher_id WHERE t.teacher_name LIKE 'Dr. %'
203
204[2025-07-29 15:36:32.521823] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT s.teacher_id, dt_teacher.teacher_name FROM students s JOIN ( SELECT teacher_id, teacher_name FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM ( SELECT teacher_id, teacher_name, department FROM teachers ) AS inner_dt1 ) AS inner_dt2 ) AS inner_dt3 ) AS dt_teacher ON s.teacher_id = dt_teacher.teacher_id WHERE dt_teacher.teacher_name LIKE \'Dr. %\';\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, teacher_id INT );\nCREATE TABLE teachers ( teacher_id INT AUTO_INCREMENT PRIMARY KEY, teacher_name VARCHAR(100) NOT NULL, department VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.40"}, "nested_loop": [{"table": {"table_name": "s", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["teacher_id"], "attached_condition": "(`test_db_case_2_1748591779`.`s`.`teacher_id` is not null)"}}, {"table": {"table_name": "teachers", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["teacher_id"], "key_length": "4", "ref": ["test_db_case_2_1748591779.s.teacher_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "2.40", "data_read_per_join": "208"}, "used_columns": ["teacher_id", "teacher_name"], "attached_condition": "(`test_db_case_2_1748591779`.`teachers`.`teacher_name` like \'Dr. %\')"}}]}}\n\nTranslated SQL:\nSELECT s.teacher_id, t.teacher_name FROM students s INNER JOIN teachers t ON s.teacher_id = t.teacher_id WHERE t.teacher_name LIKE \'Dr. %\'\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
205[2025-07-29 15:36:36.412825] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
206 "answer": "yes"
207}
208[2025-07-29 15:36:41.208302] [o4-mini Model Answer]: {"answer":"yes"}
209[2025-07-29 15:36:47.741655] [gemini-2.5-pro-preview-06-05 Model Answer]: {
210 "answer": "yes"
211}
212[2025-07-29 15:36:47.741655] [2] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
213[2025-07-29 15:36:47.742876] [2] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: True
214[2025-07-29 15:36:47.742876] [2] Hybrid Eval: Using Judge LLM 'o4-mini'
215[2025-07-29 15:36:47.742876] [2] Hybrid Eval Case Judge o4-mini Results: True
216[2025-07-29 15:36:47.742876] [2] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
217[2025-07-29 15:36:47.742876] [2] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: True
218[2025-07-29 15:36:47.743971] [2] Hybrid Eval Case Judge Final Results: True
219[2025-07-29 15:36:47.743971] [2] hybrid Eval Case Final Result: True
220[2025-07-29 15:36:47.743971]
221--- Case: 3 ---
222[2025-07-29 15:36:47.743971] [3] Case Run 1/1
223[2025-07-29 15:36:47.745034] [Model Prompt]: You are a database expert in SQL performance optimization.
224Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
225Output only the optimized SQL as a single-line statement with no markdown or extra text.
226
227Table Definitions:
228CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
229
230Explain Output in JSON:
231{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}
232
233Original SQL:
234SELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = 'MALE'
235
236Optimized SQL:
237
238[2025-07-29 15:36:47.745034] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}\n\nOriginal SQL:\nSELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = \'MALE\'\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
239[2025-07-29 15:37:07.236934] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT s.student_id, s.student_name, s.date_of_birth FROM students s WHERE s.gender = 'Male' ORDER BY s.student_id DESC LIMIT 1
240[2025-07-29 15:37:07.238966] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
241they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
242Return **only** JSON in this format, with no extra text:
243
244{
245 "answer": "yes" | "no"
246}
247
248Original SQL:
249SELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = 'MALE'
250
251Table Definitions:
252CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
253
254Explain Output in JSON:
255{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}
256
257Translated SQL:
258SELECT s.student_id, s.student_name, s.date_of_birth FROM students s WHERE s.gender = 'Male' ORDER BY s.student_id DESC LIMIT 1
259
260[2025-07-29 15:37:07.239971] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = \'MALE\'\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name, s.date_of_birth FROM students s WHERE s.gender = \'Male\' ORDER BY s.student_id DESC LIMIT 1\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
261[2025-07-29 15:37:07.242992] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
262they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
263Return **only** JSON in this format, with no extra text:
264
265{
266 "answer": "yes" | "no"
267}
268
269Original SQL:
270SELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = 'MALE'
271
272Table Definitions:
273CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
274
275Explain Output in JSON:
276{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}
277
278Translated SQL:
279SELECT s.student_id, s.student_name, s.date_of_birth FROM students s WHERE s.gender = 'Male' ORDER BY s.student_id DESC LIMIT 1
280
281[2025-07-29 15:37:07.244501] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = \'MALE\'\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name, s.date_of_birth FROM students s WHERE s.gender = \'Male\' ORDER BY s.student_id DESC LIMIT 1\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
282[2025-07-29 15:37:07.245511] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
283they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
284Return **only** JSON in this format, with no extra text:
285
286{
287 "answer": "yes" | "no"
288}
289
290Original SQL:
291SELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = 'MALE'
292
293Table Definitions:
294CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
295
296Explain Output in JSON:
297{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}
298
299Translated SQL:
300SELECT s.student_id, s.student_name, s.date_of_birth FROM students s WHERE s.gender = 'Male' ORDER BY s.student_id DESC LIMIT 1
301
302[2025-07-29 15:37:07.247532] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT s.student_id, s.student_name, s.date_of_birth FROM students s JOIN ( SELECT student_id, gender FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM ( SELECT student_id, gender, date_of_birth FROM students ORDER BY student_id DESC ) AS inner_dt3 ) AS inner_dt2 ORDER BY student_id DESC LIMIT 1 ) AS inner_dt1 ) dt ON s.student_id = dt.student_id WHERE dt.gender = \'MALE\'\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "gender", "date_of_birth"]}}}}}}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name, s.date_of_birth FROM students s WHERE s.gender = \'Male\' ORDER BY s.student_id DESC LIMIT 1\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
303[2025-07-29 15:37:11.084667] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
304 "answer": "no"
305}
306[2025-07-29 15:37:16.115088] [o4-mini Model Answer]: {"answer":"no"}
307[2025-07-29 15:37:27.530958] [gemini-2.5-pro-preview-06-05 Model Answer]: {
308 "answer": "no"
309}
310[2025-07-29 15:37:27.531964] [3] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
311[2025-07-29 15:37:27.531964] [3] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: False
312[2025-07-29 15:37:27.531964] [3] Hybrid Eval: Using Judge LLM 'o4-mini'
313[2025-07-29 15:37:27.531964] [3] Hybrid Eval Case Judge o4-mini Results: False
314[2025-07-29 15:37:27.531964] [3] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
315[2025-07-29 15:37:27.533315] [3] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: False
316[2025-07-29 15:37:27.533315] [3] Hybrid Eval Case Judge Final Results: False
317[2025-07-29 15:37:27.533315] [3] hybrid Eval Case Final Result: False
318[2025-07-29 15:37:27.533315]
319--- Case: 4 ---
320[2025-07-29 15:37:27.534385] [4] Case Run 1/1
321[2025-07-29 15:37:27.534385] [Model Prompt]: You are a database expert in SQL performance optimization.
322Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
323Output only the optimized SQL as a single-line statement with no markdown or extra text.
324
325Table Definitions:
326CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
327CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
328
329Explain Output in JSON:
330{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = 'Female') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= '2000-01-01') and (`test_db_case_5_1748591779`.`s`.`student_name` <> 'TestName'))"}}]}}
331
332Original SQL:
333SELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' LIMIT 10;
334
335Optimized SQL:
336
337[2025-07-29 15:37:27.535385] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = \'Female\') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= \'2000-01-01\') and (`test_db_case_5_1748591779`.`s`.`student_name` <> \'TestName\'))"}}]}}\n\nOriginal SQL:\nSELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = \'Female\' AND s.date_of_birth <= \'2000-01-01\' AND s.student_name != \'TestName\' LIMIT 10;\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
338[2025-07-29 15:37:32.772867] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT s.student_id FROM students s WHERE s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' AND EXISTS (SELECT 1 FROM enrollments e WHERE e.student_id = s.student_id) LIMIT 10;
339[2025-07-29 15:37:32.978391] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
340they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
341Return **only** JSON in this format, with no extra text:
342
343{
344 "answer": "yes" | "no"
345}
346
347Original SQL:
348SELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' LIMIT 10;
349
350Table Definitions:
351CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
352CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
353
354Explain Output in JSON:
355{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = 'Female') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= '2000-01-01') and (`test_db_case_5_1748591779`.`s`.`student_name` <> 'TestName'))"}}]}}
356
357Translated SQL:
358SELECT s.student_id FROM students s WHERE s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' AND EXISTS (SELECT 1 FROM enrollments e WHERE e.student_id = s.student_id) LIMIT 10;
359
360[2025-07-29 15:37:32.981162] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = \'Female\' AND s.date_of_birth <= \'2000-01-01\' AND s.student_name != \'TestName\' LIMIT 10;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = \'Female\') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= \'2000-01-01\') and (`test_db_case_5_1748591779`.`s`.`student_name` <> \'TestName\'))"}}]}}\n\nTranslated SQL:\nSELECT s.student_id FROM students s WHERE s.gender = \'Female\' AND s.date_of_birth <= \'2000-01-01\' AND s.student_name != \'TestName\' AND EXISTS (SELECT 1 FROM enrollments e WHERE e.student_id = s.student_id) LIMIT 10;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
361[2025-07-29 15:37:32.982175] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
362they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
363Return **only** JSON in this format, with no extra text:
364
365{
366 "answer": "yes" | "no"
367}
368
369Original SQL:
370SELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' LIMIT 10;
371
372Table Definitions:
373CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
374CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
375
376Explain Output in JSON:
377{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = 'Female') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= '2000-01-01') and (`test_db_case_5_1748591779`.`s`.`student_name` <> 'TestName'))"}}]}}
378
379Translated SQL:
380SELECT s.student_id FROM students s WHERE s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' AND EXISTS (SELECT 1 FROM enrollments e WHERE e.student_id = s.student_id) LIMIT 10;
381
382[2025-07-29 15:37:32.983817] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = \'Female\' AND s.date_of_birth <= \'2000-01-01\' AND s.student_name != \'TestName\' LIMIT 10;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = \'Female\') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= \'2000-01-01\') and (`test_db_case_5_1748591779`.`s`.`student_name` <> \'TestName\'))"}}]}}\n\nTranslated SQL:\nSELECT s.student_id FROM students s WHERE s.gender = \'Female\' AND s.date_of_birth <= \'2000-01-01\' AND s.student_name != \'TestName\' AND EXISTS (SELECT 1 FROM enrollments e WHERE e.student_id = s.student_id) LIMIT 10;\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
383[2025-07-29 15:37:32.985383] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
384they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
385Return **only** JSON in this format, with no extra text:
386
387{
388 "answer": "yes" | "no"
389}
390
391Original SQL:
392SELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' LIMIT 10;
393
394Table Definitions:
395CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM('Male', 'Female', 'Other'), date_of_birth DATE );
396CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
397
398Explain Output in JSON:
399{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = 'Female') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= '2000-01-01') and (`test_db_case_5_1748591779`.`s`.`student_name` <> 'TestName'))"}}]}}
400
401Translated SQL:
402SELECT s.student_id FROM students s WHERE s.gender = 'Female' AND s.date_of_birth <= '2000-01-01' AND s.student_name != 'TestName' AND EXISTS (SELECT 1 FROM enrollments e WHERE e.student_id = s.student_id) LIMIT 10;
403
404[2025-07-29 15:37:32.985383] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id FROM students s WHERE s.student_id IN ( SELECT e.student_id FROM enrollments e WHERE e.student_id = s.student_id ) AND s.gender = \'Female\' AND s.date_of_birth <= \'2000-01-01\' AND s.student_name != \'TestName\' LIMIT 10;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) NOT NULL, gender ENUM(\'Male\', \'Female\', \'Other\'), date_of_birth DATE );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "duplicates_removal": {"using_temporary_table": true, "nested_loop": [{"table": {"table_name": "e", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"]}}, {"table": {"table_name": "s", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["test_db_case_5_1748591779.e.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "gender", "date_of_birth"], "attached_condition": "((`test_db_case_5_1748591779`.`s`.`gender` = \'Female\') and (`test_db_case_5_1748591779`.`s`.`date_of_birth` <= \'2000-01-01\') and (`test_db_case_5_1748591779`.`s`.`student_name` <> \'TestName\'))"}}]}}\n\nTranslated SQL:\nSELECT s.student_id FROM students s WHERE s.gender = \'Female\' AND s.date_of_birth <= \'2000-01-01\' AND s.student_name != \'TestName\' AND EXISTS (SELECT 1 FROM enrollments e WHERE e.student_id = s.student_id) LIMIT 10;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
405[2025-07-29 15:37:35.893592] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
406 "answer": "yes"
407}
408[2025-07-29 15:37:45.602094] [o4-mini Model Answer]: {"answer":"yes"}
409[2025-07-29 15:37:52.729682] [gemini-2.5-pro-preview-06-05 Model Answer]: {
410 "answer": "yes"
411}
412[2025-07-29 15:37:52.729682] [4] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
413[2025-07-29 15:37:52.729682] [4] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: True
414[2025-07-29 15:37:52.729682] [4] Hybrid Eval: Using Judge LLM 'o4-mini'
415[2025-07-29 15:37:52.729682] [4] Hybrid Eval Case Judge o4-mini Results: True
416[2025-07-29 15:37:52.730915] [4] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
417[2025-07-29 15:37:52.730915] [4] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: True
418[2025-07-29 15:37:52.730915] [4] Hybrid Eval Case Judge Final Results: True
419[2025-07-29 15:37:52.730915] [4] hybrid Eval Case Final Result: True
420[2025-07-29 15:37:52.730915]
421--- Case: 5 ---
422[2025-07-29 15:37:52.730915] [5] Case Run 1/1
423[2025-07-29 15:37:52.730915] [Model Prompt]: You are a database expert in SQL performance optimization.
424Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
425Output only the optimized SQL as a single-line statement with no markdown or extra text.
426
427Table Definitions:
428CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
429
430Explain Output in JSON:
431{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat('id_',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= 'id_1000')"}}}
432
433Original SQL:
434SELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;
435
436Optimized SQL:
437
438[2025-07-29 15:37:52.730915] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat(\'id_\',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= \'id_1000\')"}}}\n\nOriginal SQL:\nSELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
439[2025-07-29 15:37:56.565831] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT student_id, CONCAT('id_', student_id) AS student_id2 FROM enrollments WHERE student_id >= 1000 LIMIT 10;
440[2025-07-29 15:37:56.568206] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
441they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
442Return **only** JSON in this format, with no extra text:
443
444{
445 "answer": "yes" | "no"
446}
447
448Original SQL:
449SELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;
450
451Table Definitions:
452CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
453
454Explain Output in JSON:
455{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat('id_',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= 'id_1000')"}}}
456
457Translated SQL:
458SELECT student_id, CONCAT('id_', student_id) AS student_id2 FROM enrollments WHERE student_id >= 1000 LIMIT 10;
459
460[2025-07-29 15:37:56.569205] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat(\'id_\',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= \'id_1000\')"}}}\n\nTranslated SQL:\nSELECT student_id, CONCAT(\'id_\', student_id) AS student_id2 FROM enrollments WHERE student_id >= 1000 LIMIT 10;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
461[2025-07-29 15:37:56.572305] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
462they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
463Return **only** JSON in this format, with no extra text:
464
465{
466 "answer": "yes" | "no"
467}
468
469Original SQL:
470SELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;
471
472Table Definitions:
473CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
474
475Explain Output in JSON:
476{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat('id_',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= 'id_1000')"}}}
477
478Translated SQL:
479SELECT student_id, CONCAT('id_', student_id) AS student_id2 FROM enrollments WHERE student_id >= 1000 LIMIT 10;
480
481[2025-07-29 15:37:56.573409] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat(\'id_\',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= \'id_1000\')"}}}\n\nTranslated SQL:\nSELECT student_id, CONCAT(\'id_\', student_id) AS student_id2 FROM enrollments WHERE student_id >= 1000 LIMIT 10;\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
482[2025-07-29 15:37:56.574615] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
483they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
484Return **only** JSON in this format, with no extra text:
485
486{
487 "answer": "yes" | "no"
488}
489
490Original SQL:
491SELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;
492
493Table Definitions:
494CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
495
496Explain Output in JSON:
497{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat('id_',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= 'id_1000')"}}}
498
499Translated SQL:
500SELECT student_id, CONCAT('id_', student_id) AS student_id2 FROM enrollments WHERE student_id >= 1000 LIMIT 10;
501
502[2025-07-29 15:37:56.576917] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id, CONCAT("id_", student_id) as student_id2 FROM enrollments WHERE CONCAT("id_", student_id) >= "id_1000" LIMIT 10;\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["student_id"], "attached_condition": "(concat(\'id_\',`test_db_case_6_1748591779`.`enrollments`.`student_id`) >= \'id_1000\')"}}}\n\nTranslated SQL:\nSELECT student_id, CONCAT(\'id_\', student_id) AS student_id2 FROM enrollments WHERE student_id >= 1000 LIMIT 10;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
503[2025-07-29 15:37:59.796329] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
504 "answer": "no"
505}
506[2025-07-29 15:38:10.207149] [o4-mini Model Answer]: {"answer":"no"}
507[2025-07-29 15:38:17.939236] [gemini-2.5-pro-preview-06-05 Model Answer]: {
508 "answer": "no"
509}
510[2025-07-29 15:38:17.939236] [5] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
511[2025-07-29 15:38:17.939236] [5] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: False
512[2025-07-29 15:38:17.939236] [5] Hybrid Eval: Using Judge LLM 'o4-mini'
513[2025-07-29 15:38:17.939236] [5] Hybrid Eval Case Judge o4-mini Results: False
514[2025-07-29 15:38:17.939236] [5] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
515[2025-07-29 15:38:17.939236] [5] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: False
516[2025-07-29 15:38:17.939236] [5] Hybrid Eval Case Judge Final Results: False
517[2025-07-29 15:38:17.939236] [5] hybrid Eval Case Final Result: False
518[2025-07-29 15:38:17.939236]
519--- Case: 6 ---
520[2025-07-29 15:38:17.945121] [6] Case Run 1/1
521[2025-07-29 15:38:17.945121] [Model Prompt]: You are a database expert in SQL performance optimization.
522Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
523Output only the optimized SQL as a single-line statement with no markdown or extra text.
524
525Table Definitions:
526CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
527CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
528
529Explain Output in JSON:
530{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}
531
532Original SQL:
533SELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;
534
535Optimized SQL:
536
537[2025-07-29 15:38:17.945121] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}\n\nOriginal SQL:\nSELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
538[2025-07-29 15:39:35.203649] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}\n\nOriginal SQL:\nSELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
539[2025-07-29 15:39:41.125404] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT s.student_id, s.student_name FROM students s LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.enrollment_id > 1000 WHERE e.student_id IS NULL;
540[2025-07-29 15:39:41.125404] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
541they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
542Return **only** JSON in this format, with no extra text:
543
544{
545 "answer": "yes" | "no"
546}
547
548Original SQL:
549SELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;
550
551Table Definitions:
552CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
553CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
554
555Explain Output in JSON:
556{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}
557
558Translated SQL:
559SELECT s.student_id, s.student_name FROM students s LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.enrollment_id > 1000 WHERE e.student_id IS NULL;
560
561[2025-07-29 15:39:41.125404] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name FROM students s LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.enrollment_id > 1000 WHERE e.student_id IS NULL;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
562[2025-07-29 15:39:41.125404] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
563they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
564Return **only** JSON in this format, with no extra text:
565
566{
567 "answer": "yes" | "no"
568}
569
570Original SQL:
571SELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;
572
573Table Definitions:
574CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
575CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
576
577Explain Output in JSON:
578{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}
579
580Translated SQL:
581SELECT s.student_id, s.student_name FROM students s LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.enrollment_id > 1000 WHERE e.student_id IS NULL;
582
583[2025-07-29 15:39:41.131266] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
584they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
585Return **only** JSON in this format, with no extra text:
586
587{
588 "answer": "yes" | "no"
589}
590
591Original SQL:
592SELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;
593
594Table Definitions:
595CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
596CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
597
598Explain Output in JSON:
599{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}
600
601Translated SQL:
602SELECT s.student_id, s.student_name FROM students s LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.enrollment_id > 1000 WHERE e.student_id IS NULL;
603
604[2025-07-29 15:39:41.131266] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name FROM students s LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.enrollment_id > 1000 WHERE e.student_id IS NULL;\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
605[2025-07-29 15:39:41.131266] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE NOT ( SELECT count(*) FROM enrollments WHERE students.student_id = enrollments.student_id AND enrollment_id > 1000 ) > 0;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"], "attached_condition": "((/* select#2 */ select count(0) from `test_db_case_7_1748591779`.`enrollments` where ((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))) <= 0)", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.41"}, "table": {"table_name": "enrollments", "access_type": "range", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["enrollment_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.21", "eval_cost": "0.20", "prefix_cost": "1.41", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id"], "attached_condition": "((`test_db_case_7_1748591779`.`students`.`student_id` = `test_db_case_7_1748591779`.`enrollments`.`student_id`) and (`test_db_case_7_1748591779`.`enrollment_id` > 1000))"}}}]}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name FROM students s LEFT JOIN enrollments e ON s.student_id = e.student_id AND e.enrollment_id > 1000 WHERE e.student_id IS NULL;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
606[2025-07-29 15:39:44.615044] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
607 "answer": "yes"
608}
609[2025-07-29 15:39:47.435657] [o4-mini Model Answer]: {"answer": "yes"}
610[2025-07-29 15:40:00.978086] [gemini-2.5-pro-preview-06-05 Model Answer]: {
611 "answer": "yes"
612}
613[2025-07-29 15:40:00.979085] [6] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
614[2025-07-29 15:40:00.980089] [6] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: True
615[2025-07-29 15:40:00.980089] [6] Hybrid Eval: Using Judge LLM 'o4-mini'
616[2025-07-29 15:40:00.980089] [6] Hybrid Eval Case Judge o4-mini Results: True
617[2025-07-29 15:40:00.980089] [6] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
618[2025-07-29 15:40:00.980089] [6] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: True
619[2025-07-29 15:40:00.981091] [6] Hybrid Eval Case Judge Final Results: True
620[2025-07-29 15:40:00.981091] [6] hybrid Eval Case Final Result: True
621[2025-07-29 15:40:00.981091]
622--- Case: 7 ---
623[2025-07-29 15:40:00.982486] [7] Case Run 1/1
624[2025-07-29 15:40:00.982486] [Model Prompt]: You are a database expert in SQL performance optimization.
625Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
626Output only the optimized SQL as a single-line statement with no markdown or extra text.
627
628Table Definitions:
629CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
630
631Explain Output in JSON:
632{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > '1993-11-26') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < '1991-11-26'))"}}}}
633
634Original SQL:
635SELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999
636
637Optimized SQL:
638
639[2025-07-29 15:40:00.983576] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > \'1993-11-26\') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < \'1991-11-26\'))"}}}}\n\nOriginal SQL:\nSELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
640[2025-07-29 15:40:08.274137] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT student_id, MAX(enrollment_date) AS latest_date FROM enrollments WHERE (enrollment_date > '1993-11-26' OR enrollment_date < '1991-11-26') AND student_id = 1999 GROUP BY student_id
641[2025-07-29 15:40:08.276157] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
642they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
643Return **only** JSON in this format, with no extra text:
644
645{
646 "answer": "yes" | "no"
647}
648
649Original SQL:
650SELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999
651
652Table Definitions:
653CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
654
655Explain Output in JSON:
656{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > '1993-11-26') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < '1991-11-26'))"}}}}
657
658Translated SQL:
659SELECT student_id, MAX(enrollment_date) AS latest_date FROM enrollments WHERE (enrollment_date > '1993-11-26' OR enrollment_date < '1991-11-26') AND student_id = 1999 GROUP BY student_id
660
661[2025-07-29 15:40:08.277434] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > \'1993-11-26\') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < \'1991-11-26\'))"}}}}\n\nTranslated SQL:\nSELECT student_id, MAX(enrollment_date) AS latest_date FROM enrollments WHERE (enrollment_date > \'1993-11-26\' OR enrollment_date < \'1991-11-26\') AND student_id = 1999 GROUP BY student_id\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
662[2025-07-29 15:40:08.278578] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
663they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
664Return **only** JSON in this format, with no extra text:
665
666{
667 "answer": "yes" | "no"
668}
669
670Original SQL:
671SELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999
672
673Table Definitions:
674CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
675
676Explain Output in JSON:
677{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > '1993-11-26') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < '1991-11-26'))"}}}}
678
679Translated SQL:
680SELECT student_id, MAX(enrollment_date) AS latest_date FROM enrollments WHERE (enrollment_date > '1993-11-26' OR enrollment_date < '1991-11-26') AND student_id = 1999 GROUP BY student_id
681
682[2025-07-29 15:40:08.281271] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > \'1993-11-26\') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < \'1991-11-26\'))"}}}}\n\nTranslated SQL:\nSELECT student_id, MAX(enrollment_date) AS latest_date FROM enrollments WHERE (enrollment_date > \'1993-11-26\' OR enrollment_date < \'1991-11-26\') AND student_id = 1999 GROUP BY student_id\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
683[2025-07-29 15:40:08.282620] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
684they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
685Return **only** JSON in this format, with no extra text:
686
687{
688 "answer": "yes" | "no"
689}
690
691Original SQL:
692SELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999
693
694Table Definitions:
695CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );
696
697Explain Output in JSON:
698{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > '1993-11-26') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < '1991-11-26'))"}}}}
699
700Translated SQL:
701SELECT student_id, MAX(enrollment_date) AS latest_date FROM enrollments WHERE (enrollment_date > '1993-11-26' OR enrollment_date < '1991-11-26') AND student_id = 1999 GROUP BY student_id
702
703[2025-07-29 15:40:08.284182] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT student_id, MAX(enrollment_date) latest_date FROM enrollments WHERE enrollment_date > "1993-11-26" OR enrollment_date < "1991-11-26" GROUP BY student_id HAVING student_id = 1999\n\nTable Definitions:\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT, enrollment_date DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "grouping_operation": {"using_temporary_table": true, "using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "enrollments", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "24"}, "used_columns": ["enrollment_id", "student_id", "enrollment_date"], "attached_condition": "((`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` > \'1993-11-26\') or (`test_db_case_8_1748591779`.`enrollments`.`enrollment_date` < \'1991-11-26\'))"}}}}\n\nTranslated SQL:\nSELECT student_id, MAX(enrollment_date) AS latest_date FROM enrollments WHERE (enrollment_date > \'1993-11-26\' OR enrollment_date < \'1991-11-26\') AND student_id = 1999 GROUP BY student_id\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
704[2025-07-29 15:40:11.318868] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
705 "answer": "yes"
706}
707[2025-07-29 15:40:18.201990] [o4-mini Model Answer]: {"answer":"yes"}
708[2025-07-29 15:40:30.796361] [gemini-2.5-pro-preview-06-05 Model Answer]: {
709 "answer": "yes"
710}
711[2025-07-29 15:40:30.798903] [7] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
712[2025-07-29 15:40:30.798903] [7] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: True
713[2025-07-29 15:40:30.798903] [7] Hybrid Eval: Using Judge LLM 'o4-mini'
714[2025-07-29 15:40:30.798903] [7] Hybrid Eval Case Judge o4-mini Results: True
715[2025-07-29 15:40:30.798903] [7] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
716[2025-07-29 15:40:30.798903] [7] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: True
717[2025-07-29 15:40:30.800100] [7] Hybrid Eval Case Judge Final Results: True
718[2025-07-29 15:40:30.800100] [7] hybrid Eval Case Final Result: True
719[2025-07-29 15:40:30.800100]
720--- Case: 8 ---
721[2025-07-29 15:40:30.800100] [8] Case Run 1/1
722[2025-07-29 15:40:30.801278] [Model Prompt]: You are a database expert in SQL performance optimization.
723Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
724Output only the optimized SQL as a single-line statement with no markdown or extra text.
725
726Table Definitions:
727CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );
728
729Explain Output in JSON:
730{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}
731
732Original SQL:
733SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;
734
735Optimized SQL:
736
737[2025-07-29 15:40:30.801278] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}\n\nOriginal SQL:\nSELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
738[2025-07-29 15:40:35.544643] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT student_id, student_name, namespace FROM students ORDER BY COUNT(namespace) OVER (PARTITION BY student_id)
739[2025-07-29 15:40:35.544643] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
740they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
741Return **only** JSON in this format, with no extra text:
742
743{
744 "answer": "yes" | "no"
745}
746
747Original SQL:
748SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;
749
750Table Definitions:
751CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );
752
753Explain Output in JSON:
754{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}
755
756Translated SQL:
757SELECT student_id, student_name, namespace FROM students ORDER BY COUNT(namespace) OVER (PARTITION BY student_id)
758
759[2025-07-29 15:40:35.544643] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}\n\nTranslated SQL:\nSELECT student_id, student_name, namespace FROM students ORDER BY COUNT(namespace) OVER (PARTITION BY student_id)\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
760[2025-07-29 15:40:35.551924] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
761they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
762Return **only** JSON in this format, with no extra text:
763
764{
765 "answer": "yes" | "no"
766}
767
768Original SQL:
769SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;
770
771Table Definitions:
772CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );
773
774Explain Output in JSON:
775{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}
776
777Translated SQL:
778SELECT student_id, student_name, namespace FROM students ORDER BY COUNT(namespace) OVER (PARTITION BY student_id)
779
780[2025-07-29 15:40:35.554341] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}\n\nTranslated SQL:\nSELECT student_id, student_name, namespace FROM students ORDER BY COUNT(namespace) OVER (PARTITION BY student_id)\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
781[2025-07-29 15:40:35.554341] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
782they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
783Return **only** JSON in this format, with no extra text:
784
785{
786 "answer": "yes" | "no"
787}
788
789Original SQL:
790SELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;
791
792Table Definitions:
793CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );
794
795Explain Output in JSON:
796{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}
797
798Translated SQL:
799SELECT student_id, student_name, namespace FROM students ORDER BY COUNT(namespace) OVER (PARTITION BY student_id)
800
801[2025-07-29 15:40:35.556346] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM ( SELECT * FROM ( SELECT * FROM ( SELECT * FROM students GROUP BY student_id ORDER BY COUNT(namespace) ) AS t1 ) AS t2 ) AS t3;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), namespace VARCHAR(50) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "10.50"}, "table": {"table_name": "t1", "access_type": "ALL", "rows_examined_per_scan": 2, "rows_produced_per_join": 2, "filtered": "100.00", "cost_info": {"read_cost": "10.10", "eval_cost": "0.40", "prefix_cost": "10.50", "data_read_per_join": "336"}, "used_columns": ["student_id", "student_name", "namespace"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 4, "cost_info": {"query_cost": "1.20"}, "ordering_operation": {"using_temporary_table": true, "using_filesort": true, "grouping_operation": {"using_filesort": false, "table": {"table_name": "students", "access_type": "index", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "160"}, "used_columns": ["student_id", "student_name", "namespace"]}}}}}}}}\n\nTranslated SQL:\nSELECT student_id, student_name, namespace FROM students ORDER BY COUNT(namespace) OVER (PARTITION BY student_id)\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
802[2025-07-29 15:40:39.333882] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
803 "answer": "no"
804}
805[2025-07-29 15:40:42.613715] [o4-mini Model Answer]: {"answer":"no"}
806[2025-07-29 15:40:57.968684] [gemini-2.5-pro-preview-06-05 Model Answer]: {
807 "answer": "no"
808}
809[2025-07-29 15:40:57.968684] [8] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
810[2025-07-29 15:40:57.968684] [8] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: False
811[2025-07-29 15:40:57.968684] [8] Hybrid Eval: Using Judge LLM 'o4-mini'
812[2025-07-29 15:40:57.968684] [8] Hybrid Eval Case Judge o4-mini Results: False
813[2025-07-29 15:40:57.968684] [8] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
814[2025-07-29 15:40:57.968684] [8] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: False
815[2025-07-29 15:40:57.968684] [8] Hybrid Eval Case Judge Final Results: False
816[2025-07-29 15:40:57.968684] [8] hybrid Eval Case Final Result: False
817[2025-07-29 15:40:57.968684]
818--- Case: 9 ---
819[2025-07-29 15:40:57.968684] [9] Case Run 1/1
820[2025-07-29 15:40:57.968684] [Model Prompt]: You are a database expert in SQL performance optimization.
821Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
822Output only the optimized SQL as a single-line statement with no markdown or extra text.
823
824Table Definitions:
825CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
826CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );
827
828Explain Output in JSON:
829{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}
830
831Original SQL:
832SELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );
833
834Optimized SQL:
835
836[2025-07-29 15:40:57.968684] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
837[2025-07-29 15:41:01.170849] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT s.student_id, s.student_name FROM students s INNER JOIN enrollments e ON s.student_id = e.student_id
838[2025-07-29 15:41:01.172997] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
839they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
840Return **only** JSON in this format, with no extra text:
841
842{
843 "answer": "yes" | "no"
844}
845
846Original SQL:
847SELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );
848
849Table Definitions:
850CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
851CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );
852
853Explain Output in JSON:
854{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}
855
856Translated SQL:
857SELECT s.student_id, s.student_name FROM students s INNER JOIN enrollments e ON s.student_id = e.student_id
858
859[2025-07-29 15:41:01.174098] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name FROM students s INNER JOIN enrollments e ON s.student_id = e.student_id\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
860[2025-07-29 15:41:01.175314] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
861they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
862Return **only** JSON in this format, with no extra text:
863
864{
865 "answer": "yes" | "no"
866}
867
868Original SQL:
869SELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );
870
871Table Definitions:
872CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
873CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );
874
875Explain Output in JSON:
876{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}
877
878Translated SQL:
879SELECT s.student_id, s.student_name FROM students s INNER JOIN enrollments e ON s.student_id = e.student_id
880
881[2025-07-29 15:41:01.178386] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name FROM students s INNER JOIN enrollments e ON s.student_id = e.student_id\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
882[2025-07-29 15:41:01.178386] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
883they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
884Return **only** JSON in this format, with no extra text:
885
886{
887 "answer": "yes" | "no"
888}
889
890Original SQL:
891SELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );
892
893Table Definitions:
894CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
895CREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );
896
897Explain Output in JSON:
898{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}
899
900Translated SQL:
901SELECT s.student_id, s.student_name FROM students s INNER JOIN enrollments e ON s.student_id = e.student_id
902
903[2025-07-29 15:41:01.180392] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_id IN ( SELECT student_id FROM enrollments AS inner_dt );\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE enrollments ( enrollment_id INT AUTO_INCREMENT PRIMARY KEY, student_id INT NOT NULL, course_id INT );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "4.80"}, "nested_loop": [{"table": {"table_name": "<subquery2>", "access_type": "ALL", "materialized_from_subquery": {"using_temporary_table": true, "query_block": {"table": {"table_name": "inner_dt", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "16"}, "used_columns": ["student_id"]}}}}}, {"table": {"table_name": "students", "access_type": "eq_ref", "possible_keys": ["PRIMARY"], "key": "PRIMARY", "used_key_parts": ["student_id"], "key_length": "4", "ref": ["<subquery2>.student_id"], "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "4.80", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name"]}}]}}\n\nTranslated SQL:\nSELECT s.student_id, s.student_name FROM students s INNER JOIN enrollments e ON s.student_id = e.student_id\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
904[2025-07-29 15:41:04.828080] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
905 "answer": "no"
906}
907[2025-07-29 15:41:07.856694] [o4-mini Model Answer]: {"answer":"no"}
908[2025-07-29 15:41:20.024868] [gemini-2.5-pro-preview-06-05 Model Answer]: {
909 "answer": "no"
910}
911[2025-07-29 15:41:20.025883] [9] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
912[2025-07-29 15:41:20.025883] [9] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: False
913[2025-07-29 15:41:20.025883] [9] Hybrid Eval: Using Judge LLM 'o4-mini'
914[2025-07-29 15:41:20.026886] [9] Hybrid Eval Case Judge o4-mini Results: False
915[2025-07-29 15:41:20.026886] [9] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
916[2025-07-29 15:41:20.026886] [9] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: False
917[2025-07-29 15:41:20.026886] [9] Hybrid Eval Case Judge Final Results: False
918[2025-07-29 15:41:20.026886] [9] hybrid Eval Case Final Result: False
919[2025-07-29 15:41:20.027918]
920--- Case: 10 ---
921[2025-07-29 15:41:20.027918] [10] Case Run 1/1
922[2025-07-29 15:41:20.027918] [Model Prompt]: You are a database expert in SQL performance optimization.
923Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
924Output only the optimized SQL as a single-line statement with no markdown or extra text.
925
926Table Definitions:
927CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );
928
929Explain Output in JSON:
930{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}
931
932Original SQL:
933SELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;
934
935Optimized SQL:
936
937[2025-07-29 15:41:20.028922] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}\n\nOriginal SQL:\nSELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
938[2025-07-29 15:41:24.672331] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT T1.student_name, T1.date_of_birth FROM students AS T1 ORDER BY T1.student_name, T1.date_of_birth LIMIT 3;
939[2025-07-29 15:41:24.676001] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
940they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
941Return **only** JSON in this format, with no extra text:
942
943{
944 "answer": "yes" | "no"
945}
946
947Original SQL:
948SELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;
949
950Table Definitions:
951CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );
952
953Explain Output in JSON:
954{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}
955
956Translated SQL:
957SELECT T1.student_name, T1.date_of_birth FROM students AS T1 ORDER BY T1.student_name, T1.date_of_birth LIMIT 3;
958
959[2025-07-29 15:41:24.677755] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}\n\nTranslated SQL:\nSELECT T1.student_name, T1.date_of_birth FROM students AS T1 ORDER BY T1.student_name, T1.date_of_birth LIMIT 3;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
960[2025-07-29 15:41:24.677755] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
961they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
962Return **only** JSON in this format, with no extra text:
963
964{
965 "answer": "yes" | "no"
966}
967
968Original SQL:
969SELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;
970
971Table Definitions:
972CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );
973
974Explain Output in JSON:
975{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}
976
977Translated SQL:
978SELECT T1.student_name, T1.date_of_birth FROM students AS T1 ORDER BY T1.student_name, T1.date_of_birth LIMIT 3;
979
980[2025-07-29 15:41:24.680197] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}\n\nTranslated SQL:\nSELECT T1.student_name, T1.date_of_birth FROM students AS T1 ORDER BY T1.student_name, T1.date_of_birth LIMIT 3;\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
981[2025-07-29 15:41:24.680197] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
982they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
983Return **only** JSON in this format, with no extra text:
984
985{
986 "answer": "yes" | "no"
987}
988
989Original SQL:
990SELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;
991
992Table Definitions:
993CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );
994
995Explain Output in JSON:
996{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}
997
998Translated SQL:
999SELECT T1.student_name, T1.date_of_birth FROM students AS T1 ORDER BY T1.student_name, T1.date_of_birth LIMIT 3;
1000
1001[2025-07-29 15:41:24.680197] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT T1.student_name, T1.date_of_birth FROM students AS T1 WHERE (SELECT COUNT(*) FROM students AS T2 WHERE T2.student_name <= T1.student_name) <= 3 AND (SELECT COUNT(*) FROM students AS T3 WHERE T3.date_of_birth <= T1.date_of_birth) <= 2 ORDER BY T1.student_name, T1.date_of_birth;\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), date_of_birth DATE );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "2.20"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "1.00"}, "table": {"table_name": "T1", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_id", "student_name", "date_of_birth"], "attached_condition": "(((/* select#2 */ select count(0) from `test_db_case_11_1748591779`.`students` `T2` where (`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)) <= 3) and ((/* select#3 */ select count(0) from `test_db_case_11_1748591779`.`students` `T3` where (`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)) <= 2))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T3", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["date_of_birth"], "attached_condition": "(`test_db_case_11_1748591779`.`T3`.`date_of_birth` <= `test_db_case_11_1748591779`.`T1`.`date_of_birth`)"}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "T2", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["student_name"], "attached_condition": "(`test_db_case_11_1748591779`.`T2`.`student_name` <= `test_db_case_11_1748591779`.`T1`.`student_name`)"}}}]}}}}\n\nTranslated SQL:\nSELECT T1.student_name, T1.date_of_birth FROM students AS T1 ORDER BY T1.student_name, T1.date_of_birth LIMIT 3;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1002[2025-07-29 15:41:30.215558] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
1003 "answer": "no"
1004}
1005[2025-07-29 15:41:32.681672] [o4-mini Model Answer]: {"answer":"no"}
1006[2025-07-29 15:42:11.801376] [gemini-2.5-pro-preview-06-05 Model Answer]: {
1007 "answer": "no"
1008}
1009[2025-07-29 15:42:11.802889] [10] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
1010[2025-07-29 15:42:11.802889] [10] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: False
1011[2025-07-29 15:42:11.802889] [10] Hybrid Eval: Using Judge LLM 'o4-mini'
1012[2025-07-29 15:42:11.802889] [10] Hybrid Eval Case Judge o4-mini Results: False
1013[2025-07-29 15:42:11.802889] [10] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
1014[2025-07-29 15:42:11.804467] [10] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: False
1015[2025-07-29 15:42:11.804467] [10] Hybrid Eval Case Judge Final Results: False
1016[2025-07-29 15:42:11.804467] [10] hybrid Eval Case Final Result: False
1017[2025-07-29 15:42:11.804467]
1018--- Case: 11 ---
1019[2025-07-29 15:42:11.805994] [11] Case Run 1/1
1020[2025-07-29 15:42:11.805994] [Model Prompt]: You are a database expert in SQL performance optimization.
1021Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
1022Output only the optimized SQL as a single-line statement with no markdown or extra text.
1023
1024Table Definitions:
1025CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );
1026
1027Explain Output in JSON:
1028{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'John%')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'Jane%')"}}}]}}}
1029
1030Original SQL:
1031SELECT * FROM students WHERE student_name LIKE 'John%' UNION SELECT * FROM students WHERE student_name LIKE 'Jane%';
1032
1033Optimized SQL:
1034
1035[2025-07-29 15:42:11.805994] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'John%\')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'Jane%\')"}}}]}}}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_name LIKE \'John%\' UNION SELECT * FROM students WHERE student_name LIKE \'Jane%\';\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
1036[2025-07-29 15:42:16.101165] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT * FROM students WHERE student_name LIKE 'John%' OR student_name LIKE 'Jane%';
1037[2025-07-29 15:42:16.103464] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1038they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1039Return **only** JSON in this format, with no extra text:
1040
1041{
1042 "answer": "yes" | "no"
1043}
1044
1045Original SQL:
1046SELECT * FROM students WHERE student_name LIKE 'John%' UNION SELECT * FROM students WHERE student_name LIKE 'Jane%';
1047
1048Table Definitions:
1049CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );
1050
1051Explain Output in JSON:
1052{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'John%')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'Jane%')"}}}]}}}
1053
1054Translated SQL:
1055SELECT * FROM students WHERE student_name LIKE 'John%' OR student_name LIKE 'Jane%';
1056
1057[2025-07-29 15:42:16.104741] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_name LIKE \'John%\' UNION SELECT * FROM students WHERE student_name LIKE \'Jane%\';\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'John%\')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'Jane%\')"}}}]}}}\n\nTranslated SQL:\nSELECT * FROM students WHERE student_name LIKE \'John%\' OR student_name LIKE \'Jane%\';\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1058[2025-07-29 15:42:16.107310] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1059they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1060Return **only** JSON in this format, with no extra text:
1061
1062{
1063 "answer": "yes" | "no"
1064}
1065
1066Original SQL:
1067SELECT * FROM students WHERE student_name LIKE 'John%' UNION SELECT * FROM students WHERE student_name LIKE 'Jane%';
1068
1069Table Definitions:
1070CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );
1071
1072Explain Output in JSON:
1073{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'John%')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'Jane%')"}}}]}}}
1074
1075Translated SQL:
1076SELECT * FROM students WHERE student_name LIKE 'John%' OR student_name LIKE 'Jane%';
1077
1078[2025-07-29 15:42:16.109658] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_name LIKE \'John%\' UNION SELECT * FROM students WHERE student_name LIKE \'Jane%\';\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'John%\')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'Jane%\')"}}}]}}}\n\nTranslated SQL:\nSELECT * FROM students WHERE student_name LIKE \'John%\' OR student_name LIKE \'Jane%\';\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1079[2025-07-29 15:42:16.109658] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1080they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1081Return **only** JSON in this format, with no extra text:
1082
1083{
1084 "answer": "yes" | "no"
1085}
1086
1087Original SQL:
1088SELECT * FROM students WHERE student_name LIKE 'John%' UNION SELECT * FROM students WHERE student_name LIKE 'Jane%';
1089
1090Table Definitions:
1091CREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );
1092
1093Explain Output in JSON:
1094{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'John%')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like 'Jane%')"}}}]}}}
1095
1096Translated SQL:
1097SELECT * FROM students WHERE student_name LIKE 'John%' OR student_name LIKE 'Jane%';
1098
1099[2025-07-29 15:42:16.112063] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE student_name LIKE \'John%\' UNION SELECT * FROM students WHERE student_name LIKE \'Jane%\';\n\nTable Definitions:\nCREATE TABLE students ( student_id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100), major VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union1,2>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'John%\')"}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "208"}, "used_columns": ["student_id", "student_name", "major"], "attached_condition": "(`test_db_case_12_1748591779`.`students`.`student_name` like \'Jane%\')"}}}]}}}\n\nTranslated SQL:\nSELECT * FROM students WHERE student_name LIKE \'John%\' OR student_name LIKE \'Jane%\';\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1100[2025-07-29 15:42:20.253182] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
1101 "answer": "yes"
1102}
1103[2025-07-29 15:42:24.441233] [o4-mini Model Answer]: {"answer":"yes"}
1104[2025-07-29 15:42:33.640487] [gemini-2.5-pro-preview-06-05 Model Answer]: {
1105 "answer": "yes"
1106}
1107[2025-07-29 15:42:33.640487] [11] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
1108[2025-07-29 15:42:33.640487] [11] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: True
1109[2025-07-29 15:42:33.640487] [11] Hybrid Eval: Using Judge LLM 'o4-mini'
1110[2025-07-29 15:42:33.640487] [11] Hybrid Eval Case Judge o4-mini Results: True
1111[2025-07-29 15:42:33.640487] [11] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
1112[2025-07-29 15:42:33.640487] [11] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: True
1113[2025-07-29 15:42:33.640487] [11] Hybrid Eval Case Judge Final Results: True
1114[2025-07-29 15:42:33.640487] [11] hybrid Eval Case Final Result: True
1115[2025-07-29 15:42:33.640487]
1116--- Case: 12 ---
1117[2025-07-29 15:42:33.640487] [12] Case Run 1/1
1118[2025-07-29 15:42:33.644226] [Model Prompt]: You are a database expert in SQL performance optimization.
1119Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
1120Output only the optimized SQL as a single-line statement with no markdown or extra text.
1121
1122Table Definitions:
1123CREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );
1124CREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );
1125
1126Explain Output in JSON:
1127{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}
1128
1129Original SQL:
1130SELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;
1131
1132Optimized SQL:
1133
1134[2025-07-29 15:42:33.644226] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );\nCREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}\n\nOriginal SQL:\nSELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
1135[2025-07-29 15:42:37.525132] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT name FROM (SELECT name, reg_date AS sort_key FROM users UNION SELECT title AS name, publish_time AS sort_key FROM articles) AS mixed ORDER BY sort_key DESC LIMIT 5;
1136[2025-07-29 15:42:37.529028] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1137they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1138Return **only** JSON in this format, with no extra text:
1139
1140{
1141 "answer": "yes" | "no"
1142}
1143
1144Original SQL:
1145SELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;
1146
1147Table Definitions:
1148CREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );
1149CREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );
1150
1151Explain Output in JSON:
1152{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}
1153
1154Translated SQL:
1155SELECT name FROM (SELECT name, reg_date AS sort_key FROM users UNION SELECT title AS name, publish_time AS sort_key FROM articles) AS mixed ORDER BY sort_key DESC LIMIT 5;
1156
1157[2025-07-29 15:42:37.530496] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;\n\nTable Definitions:\nCREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );\nCREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}\n\nTranslated SQL:\nSELECT name FROM (SELECT name, reg_date AS sort_key FROM users UNION SELECT title AS name, publish_time AS sort_key FROM articles) AS mixed ORDER BY sort_key DESC LIMIT 5;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1158[2025-07-29 15:42:37.531639] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1159they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1160Return **only** JSON in this format, with no extra text:
1161
1162{
1163 "answer": "yes" | "no"
1164}
1165
1166Original SQL:
1167SELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;
1168
1169Table Definitions:
1170CREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );
1171CREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );
1172
1173Explain Output in JSON:
1174{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}
1175
1176Translated SQL:
1177SELECT name FROM (SELECT name, reg_date AS sort_key FROM users UNION SELECT title AS name, publish_time AS sort_key FROM articles) AS mixed ORDER BY sort_key DESC LIMIT 5;
1178
1179[2025-07-29 15:42:37.534159] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1180they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1181Return **only** JSON in this format, with no extra text:
1182
1183{
1184 "answer": "yes" | "no"
1185}
1186
1187Original SQL:
1188SELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;
1189
1190Table Definitions:
1191CREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );
1192CREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );
1193
1194Explain Output in JSON:
1195{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}
1196
1197Translated SQL:
1198SELECT name FROM (SELECT name, reg_date AS sort_key FROM users UNION SELECT title AS name, publish_time AS sort_key FROM articles) AS mixed ORDER BY sort_key DESC LIMIT 5;
1199
1200[2025-07-29 15:42:37.534159] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;\n\nTable Definitions:\nCREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );\nCREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}\n\nTranslated SQL:\nSELECT name FROM (SELECT name, reg_date AS sort_key FROM users UNION SELECT title AS name, publish_time AS sort_key FROM articles) AS mixed ORDER BY sort_key DESC LIMIT 5;\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1201[2025-07-29 15:42:37.543757] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM ( (SELECT name FROM users ORDER BY reg_date DESC) UNION (SELECT title FROM articles ORDER BY publish_time DESC) ) AS mixed ORDER BY name LIMIT 5;\n\nTable Definitions:\nCREATE TABLE users ( id INT PRIMARY KEY, name VARCHAR(100), reg_date DATE );\nCREATE TABLE articles ( id INT PRIMARY KEY, title VARCHAR(255), publish_time DATETIME );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "15.00"}, "ordering_operation": {"using_filesort": true, "cost_info": {"sort_cost": "4.00"}, "table": {"table_name": "mixed", "access_type": "ALL", "rows_examined_per_scan": 4, "rows_produced_per_join": 4, "filtered": "100.00", "cost_info": {"read_cost": "10.20", "eval_cost": "0.80", "prefix_cost": "11.00", "data_read_per_join": "1K"}, "used_columns": ["name"], "materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"union_result": {"using_temporary_table": true, "table_name": "<union2,3>", "access_type": "ALL", "query_specifications": [{"dependent": false, "cacheable": true, "query_block": {"select_id": 2, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "users", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["name", "reg_date"]}}}, {"dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "articles", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "272"}, "used_columns": ["title", "publish_time"]}}}]}}}}}}\n\nTranslated SQL:\nSELECT name FROM (SELECT name, reg_date AS sort_key FROM users UNION SELECT title AS name, publish_time AS sort_key FROM articles) AS mixed ORDER BY sort_key DESC LIMIT 5;\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1202[2025-07-29 15:42:42.548849] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
1203 "answer": "no"
1204}
1205[2025-07-29 15:42:48.511216] [o4-mini Model Answer]: {"answer":"no"}
1206[2025-07-29 15:43:03.206178] [gemini-2.5-pro-preview-06-05 Model Answer]: {
1207 "answer": "no"
1208}
1209[2025-07-29 15:43:03.207183] [12] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
1210[2025-07-29 15:43:03.207183] [12] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: False
1211[2025-07-29 15:43:03.207183] [12] Hybrid Eval: Using Judge LLM 'o4-mini'
1212[2025-07-29 15:43:03.207183] [12] Hybrid Eval Case Judge o4-mini Results: False
1213[2025-07-29 15:43:03.207183] [12] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
1214[2025-07-29 15:43:03.207183] [12] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: False
1215[2025-07-29 15:43:03.207183] [12] Hybrid Eval Case Judge Final Results: False
1216[2025-07-29 15:43:03.208464] [12] hybrid Eval Case Final Result: False
1217[2025-07-29 15:43:03.208464]
1218--- Case: 13 ---
1219[2025-07-29 15:43:03.208464] [13] Case Run 1/1
1220[2025-07-29 15:43:03.208464] [Model Prompt]: You are a database expert in SQL performance optimization.
1221Given the table definitions, explain output and the original SQL, apply appropriate optimizations.
1222Output only the optimized SQL as a single-line statement with no markdown or extra text.
1223
1224Table Definitions:
1225CREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
1226CREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );
1227CREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );
1228
1229Explain Output in JSON:
1230{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}
1231
1232Original SQL:
1233SELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );
1234
1235Optimized SQL:
1236
1237[2025-07-29 15:43:03.209466] Model Request Data: {'model': 'Qwen/Qwen3-235B-A22B-Instruct-2507', 'messages': [{'role': 'user', 'content': 'You are a database expert in SQL performance optimization.\nGiven the table definitions, explain output and the original SQL, apply appropriate optimizations.\nOutput only the optimized SQL as a single-line statement with no markdown or extra text.\n\nTable Definitions:\nCREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );\nCREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}\n\nOriginal SQL:\nSELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );\n\nOptimized SQL:\n'}], 'temperature': 0.6, 'max_tokens': 6500, 'stream': False, 'response_format': None}
1238[2025-07-29 15:43:07.613941] [Qwen/Qwen3-235B-A22B-Instruct-2507 Model Answer]: SELECT * FROM students WHERE id IN (SELECT id FROM A LIMIT 1 UNION SELECT id FROM B LIMIT 1)
1239[2025-07-29 15:43:07.617967] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1240they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1241Return **only** JSON in this format, with no extra text:
1242
1243{
1244 "answer": "yes" | "no"
1245}
1246
1247Original SQL:
1248SELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );
1249
1250Table Definitions:
1251CREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
1252CREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );
1253CREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );
1254
1255Explain Output in JSON:
1256{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}
1257
1258Translated SQL:
1259SELECT * FROM students WHERE id IN (SELECT id FROM A LIMIT 1 UNION SELECT id FROM B LIMIT 1)
1260
1261[2025-07-29 15:43:07.619077] Model Request Data: {'model': 'Pro/deepseek-ai/DeepSeek-V3', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );\n\nTable Definitions:\nCREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );\nCREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}\n\nTranslated SQL:\nSELECT * FROM students WHERE id IN (SELECT id FROM A LIMIT 1 UNION SELECT id FROM B LIMIT 1)\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1262[2025-07-29 15:43:07.620083] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1263they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1264Return **only** JSON in this format, with no extra text:
1265
1266{
1267 "answer": "yes" | "no"
1268}
1269
1270Original SQL:
1271SELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );
1272
1273Table Definitions:
1274CREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
1275CREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );
1276CREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );
1277
1278Explain Output in JSON:
1279{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}
1280
1281Translated SQL:
1282SELECT * FROM students WHERE id IN (SELECT id FROM A LIMIT 1 UNION SELECT id FROM B LIMIT 1)
1283
1284[2025-07-29 15:43:07.621264] Model Request Data: {'model': 'o4-mini', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );\n\nTable Definitions:\nCREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );\nCREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}\n\nTranslated SQL:\nSELECT * FROM students WHERE id IN (SELECT id FROM A LIMIT 1 UNION SELECT id FROM B LIMIT 1)\n'}], 'max_completion_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1285[2025-07-29 15:43:07.622689] [Model Prompt]: You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is,
1286they produce the same results given the specified table definitions and considering the execution plan's implications on how the query is processed.
1287Return **only** JSON in this format, with no extra text:
1288
1289{
1290 "answer": "yes" | "no"
1291}
1292
1293Original SQL:
1294SELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );
1295
1296Table Definitions:
1297CREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );
1298CREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );
1299CREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );
1300
1301Explain Output in JSON:
1302{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}
1303
1304Translated SQL:
1305SELECT * FROM students WHERE id IN (SELECT id FROM A LIMIT 1 UNION SELECT id FROM B LIMIT 1)
1306
1307[2025-07-29 15:43:07.624840] Model Request Data: {'model': 'gemini-2.5-pro-preview-06-05', 'messages': [{'role': 'user', 'content': 'You are a database expert. Assess whether these two SQL statementsare logically equivalent—that is, \nthey produce the same results given the specified table definitions and considering the execution plan\'s implications on how the query is processed.\nReturn **only** JSON in this format, with no extra text:\n\n{\n "answer": "yes" | "no"\n}\n\nOriginal SQL:\nSELECT * FROM students WHERE id IN ( SELECT id FROM (SELECT id FROM A LIMIT 1) AS subA UNION ALL SELECT id FROM (SELECT id FROM B LIMIT 1) AS subB );\n\nTable Definitions:\nCREATE TABLE students ( id INT AUTO_INCREMENT PRIMARY KEY, student_name VARCHAR(100) );\nCREATE TABLE A ( id INT PRIMARY KEY, value VARCHAR(100) );\nCREATE TABLE B ( id INT PRIMARY KEY, value VARCHAR(100) );\n\nExplain Output in JSON:\n{"query_block": {"select_id": 1, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "students", "access_type": "ALL", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id", "student_name"], "attached_condition": "<in_optimizer>(`test_db_case_14_1748591779`.`students`.`id`,<exists>(/* select#2 */ select 1 from (/* select#3 */ select `test_db_case_14_1748591779`.`A`.`id` AS `id` from `test_db_case_14_1748591779`.`A` limit 1) `subA` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL) union all /* select#4 */ select 1 from (/* select#5 */ select `test_db_case_14_1748591779`.`B`.`id` AS `id` from `test_db_case_14_1748591779`.`B` limit 1) `subB` where (<cache>(`test_db_case_14_1748591779`.`students`.`id`) = NULL)))", "attached_subqueries": [{"dependent": true, "cacheable": false, "query_block": {"union_result": {"using_temporary_table": false, "query_specifications": [{"dependent": true, "cacheable": false, "query_block": {"select_id": 2, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 3, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "A", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}, {"dependent": true, "cacheable": false, "query_block": {"select_id": 4, "message": "no matching row in const table", "table": {"materialized_from_subquery": {"using_temporary_table": true, "dependent": false, "cacheable": true, "query_block": {"select_id": 5, "cost_info": {"query_cost": "1.20"}, "table": {"table_name": "B", "access_type": "index", "key": "PRIMARY", "used_key_parts": ["id"], "key_length": "4", "rows_examined_per_scan": 1, "rows_produced_per_join": 1, "filtered": "100.00", "using_index": true, "cost_info": {"read_cost": "1.00", "eval_cost": "0.20", "prefix_cost": "1.20", "data_read_per_join": "112"}, "used_columns": ["id"]}}}}}}]}}}}\n\nTranslated SQL:\nSELECT * FROM students WHERE id IN (SELECT id FROM A LIMIT 1 UNION SELECT id FROM B LIMIT 1)\n'}], 'temperature': 0.4, 'max_tokens': 4500, 'stream': False, 'response_format': {'type': 'json_object'}}
1308[2025-07-29 15:43:10.772004] [Pro/deepseek-ai/DeepSeek-V3 Model Answer]: {
1309 "answer": "yes"
1310}
1311[2025-07-29 15:43:27.820962] [o4-mini Model Answer]: {"answer":"yes"}
1312[2025-07-29 15:43:35.697483] [gemini-2.5-pro-preview-06-05 Model Answer]: {
1313 "answer": "yes"
1314}
1315[2025-07-29 15:43:35.698485] [13] Hybrid Eval: Using Judge LLM 'Pro/deepseek-ai/DeepSeek-V3'
1316[2025-07-29 15:43:35.698485] [13] Hybrid Eval Case Judge Pro/deepseek-ai/DeepSeek-V3 Results: True
1317[2025-07-29 15:43:35.698485] [13] Hybrid Eval: Using Judge LLM 'o4-mini'
1318[2025-07-29 15:43:35.698485] [13] Hybrid Eval Case Judge o4-mini Results: True
1319[2025-07-29 15:43:35.698485] [13] Hybrid Eval: Using Judge LLM 'gemini-2.5-pro-preview-06-05'
1320[2025-07-29 15:43:35.698485] [13] Hybrid Eval Case Judge gemini-2.5-pro-preview-06-05 Results: True
1321[2025-07-29 15:43:35.699956] [13] Hybrid Eval Case Judge Final Results: True
1322[2025-07-29 15:43:35.699956] [13] hybrid Eval Case Final Result: True